TRIG SUBSTITUTIONS, **FORWARD AND REVERSE**

BACKGROUND:

Trigonometric substitutions often allow us to handle superficially difficult integrals easily. For example, the substitution $x = \tan \theta$ reduces the integral $\int \frac{1}{1+x^2} dx$ to a $\frac{1}{1+x^2}$ dx to a trivial form. Conversely, some difficult trig integrals, for example $\int \frac{d\theta}{2 + \cos \theta}$, become simplified by the *reverse* treatment, where we convert the trig function back to a rational function.

THEORY:

Forward trig substitutions:

Expressions involving $\sqrt{x^2 + a^2}$ can be transformed by letting $x = a \tan \theta$, then $dx = a \sec^2 \theta d\theta$. This corresponds to a mnemonic right triangle with base angle θ , hypotenuse $\sqrt{x^2 + a^2}$, adjacent side *a*, and opposite side *x*. For example, $\int \frac{dx}{1+x^2} = \int$ $\frac{dx}{1+x^2} = \int \frac{\sec^2\theta d\theta}{1+\tan^2\theta} = \int d\theta.$ $\frac{\sec^2\theta d\theta}{1 + \tan^2\theta} = \int d\theta.$

Changing the right triangle to one with base angle θ , hypotenuse x, adjacent side a, and opposite side $\sqrt{x^2 - a^2}$ suggests setting $x = a \sec \theta$ and $dx = a \sec \theta \tan \theta d\theta$. Then, for exmple, $\int \frac{dx}{\sec \theta} = \int \frac{\sec \theta \tan \theta d\theta}{\sec^2 \theta} = \int d\theta$. $\frac{dx}{x\sqrt{x^2-1}} = \int \frac{\sec\theta\tan\theta d\theta}{\sec\theta\sqrt{\sec^2\theta-1}} = \int d$ $\frac{\csc \theta \tan \theta d\theta}{\sec \theta \sqrt{\sec^2 \theta - 1}} = \int d\theta.$

The third distinct configuration of the right triangle (modulo interchanging the legs, of course) results in base angle θ , hypotenuse *a*, adjacent side *x*, and opposite side $\sqrt{a^2 - x^2}$, and we use the substitutions $x = a \cos \theta$ and $dx = -a \sin \theta d\theta$. For example, $\int \frac{dx}{\sqrt{dx}} = \int$ $\frac{dx}{1-x^2} = \int \frac{-\sin\theta d\theta dx}{\sqrt{1-x^2}} = -\int d\theta.$

Reverse trig substitutions:

Given a right triangle with base angle θ , adjacent side $\frac{1-u^2}{2}$ and opp $\frac{-u^2}{2}$ and opposite side *u*, we immediately have that the hypotenuse is $\int \left(\frac{1 - u^2}{2} \right)^2 + u^2$ 2 $\left|$ $\right|$ $\left| \cdot \right|$ $u^2 + u^2 = \frac{1+u^2}{2}$. The fu $\frac{du}{2}$. The fundamental trig ratios are then: $\sin \theta = \frac{2u}{1}$, $\cos \theta$ $\frac{2u}{1+u^2}$, $\cos\theta = \frac{1-u^2}{1+u^2}$, and ta $\frac{1-u^2}{1+u^2}$, and $\tan\theta = \frac{2u}{1-u^2}$. Also $\frac{2u}{1-u^2}$. Also $\frac{d \sin \theta}{du} = \cos \theta \frac{d \theta}{du} = \frac{2(1+u^2) - (2u)^2}{(1+u^2)^2}$, so $\frac{(2u)}{(1+u^2)^2}$, so $\frac{d\theta}{du} = \frac{1}{\cos\theta} \left(\frac{2(1)}{(1+1)} \right)$ $\cos \theta \left(\frac{\pi}{(1+i)} \right)$ $\frac{2(1-u^2)}{(1+u^2)^2}$ = $\frac{1+u^2}{1-u^2}$ $\left(\frac{2(1-u^2)}{(1+u^2)^2}\right)$ $\sqrt{1-u^2}\sqrt{\sqrt{1+1}}$ $2(1-u^2)$ $\left(\frac{2(1-u^2)}{(1+u^2)^2}\right) = \frac{2}{1+u^2}$, then $\frac{2}{1+u^2}$, then it is clear that $d\theta = \frac{2du}{1+u^2}$. $\frac{2au}{1+u^2}$. Now consider $\int \frac{d\theta}{2 + \cos \theta}$. Making the substitutions from our theory, this integral becomes $\left(\frac{1}{2} \right)^2$ $\frac{1-u^2}{2+\frac{1-u^2}{2}}$ $\frac{1+u^2}{2}$ $\sqrt{1 + u^2}$ $\frac{2du}{2} = 2 \int$ $\frac{2du}{1+u^2} = 2\int \frac{du}{3+u^2} = \frac{2\sqrt{3}}{3}\int \frac{du}{u^2}$ 3 J $\frac{1}{2}$ $d\left(\frac{u}{\sqrt{u}}\right)$ $\overline{3}$) $\overline{1}$ $1 + \left(\frac{u}{\sqrt{2}}\right)$ $\overline{3}$) $\frac{2\sqrt{3}}{3}$ arctan $rac{\sqrt{3}}{3}$ arctan $rac{u}{\sqrt{3}}$. 3 .

© Thomas Beatty