
FALL 24 - CALCULUS 3 - EXAM 4 - Solutions
All problems equal points. 60 minutes.

1) Find the volume of the figure that is above the xy-plane, inside the cylinder given by
x2  y2  4, and below the paraboloid given by z  x2  y2.

We choose cylindrical coordinates for this problem. The floor of the figure is the circular
cross section (radius 2) of the cylinder in the xy-plane The paraboloid and the cylinder
intersect in a circle of radius 2 in the plane at z  4. By the rotational symmetry of the figure
about the z-axis, the limits of integration are 0    2 and 0  r  2. The paraboloid is the
"roof" of the figure, so 0  z  x2  y2  r2. We have the volume integral:
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2) A thin circular disk is centered at the origin and extends from x  2 to x  2. The (area)
density of the disk is given by x,y  eax2y2 in grams per sq cm. What is the total mass
of the disk in grams?

Switching to polar coordinates, we have a circle of radius 2 centered at the origin with
density function r  ear2 . Total mass M  
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3) Find the centroid of the figure bounded by the x-axis and the curve y  a2  x2 .

This is the part of the disk of radius a centered at the origin in the upper half plane. Since it
is symmetric about the y-axis, the coordinate x  0. The only remaining question is the
value for y. This is given by finding the moment of the half-disk area about the x-axis:
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4) A quartz crystal occupies the space in the first octant where 0  x  1, 0  z  1  x, and
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0  y  3  x  z. The internal temperature of the crystal is given by the function Tx,y, z  x
in degrees celsius. What is the weighted average of the temperature over the entire crystal?
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