FALL 24 - **CALCULUS 3**- **EXAM 4** - **Solutions**

All problems equal points. 60 minutes.

1) Find the volume of the figure that is above the xy-plane, inside the cylinder given by $x^2 + y^2 = 4$, and below the paraboloid given by $z = x^2 + y^2$.

We choose cylindrical coordinates for this problem. The floor of the figure is the circular cross section (radius 2) of the cylinder in the xy-plane The paraboloid and the cylinder intersect in a circle of radius 2 in the plane at $z = 4$. By the rotational symmetry of the figure about the z-axis, the limits of integration are $0 \le \theta \le 2\pi$ and $0 \le r \le 2$. The paraboloid is the "roof" of the figure, so $0 \le z \le x^2 + y^2 = r^2$. We have the volume integral: $\int_{\theta=0}^{2\pi} \int_{r=0}^{2} \int_{z=0}^{r^2} r dz dr$ $\int_{z=0}^{r^2} r dz dr d\theta = \int_{\theta=0}^{2\pi} \int_{r=0}^{2} [z]_0^{r^2} r dx$ $\int_{0}^{2} [z]_{0}^{r^{2}} r dr d\theta = \int_{0}^{2\pi} \int_{0}^{2} r^{3} dr dr$ $\int_{0}^{2} r^{3} dr d\theta$. This becomes $\int_{\theta=0}^{2\pi} \left[\frac{r^4}{4} \right]$ $\frac{2\pi}{2\pi}$ $\int \frac{r^4}{r^4}$ \int^2 $\int_{4}^{\frac{4}{4}} \int_{0}^{2} d\theta = 4 \cdot 2\pi = 8\pi.$

2) A thin circular disk is centered at the origin and extends from $x = -2$ to $x = 2$. The (area) density of the disk is given by $\sigma(x,y) = e^{-a(x^2+y^2)}$ in grams per sq cm. What is the total mass of the disk in grams?

Switching to polar coordinates, we have a circle of radius 2 centered at the origin with density function $\sigma(r) = e^{-ar^2}$. Total mass $M = \int_{\theta=0}^{2\pi} \int_{r=0}^{2} \sigma(r)r^2$ $\int_{0}^{2} \sigma(r) r dr d\theta = \int_{0}^{2\pi} \int_{0}^{2} e^{-ar^2} r$ $\int_{0}^{2} e^{-ar^2} r dr d\theta$. For the *r* $\int_{0}^{2} e^{-ar^2} r$ $\int_{0}^{2} e^{-ar^2} r dr$, let $u = -ar^2$, then $du = -2ardr$, so the integral becomes $\int_{r=0}^{2} e^{u} \left(\frac{u}{u} \right)$ $\int_{0}^{2} e^{u} \left(\frac{du}{-2a} \right) = \frac{-1}{2a} \int_{0}^{2} e^{u} du$ $\int_{0}^{2} e^{u} du = \frac{-1}{2a} \left[e^{-ar^2} \right]_{0}^{2}$ $r=0$ ^{\ldots} $\frac{2}{\alpha}$. This evaluates to $\frac{-1}{2a} [e^{-4a} \frac{-1}{2a}[e^{-4a}-1]$. Since $a>0$ for there to be any physical mass, we can rewrite this as $\frac{1-e^{-4a}}{2}$. Fina $\frac{e^{-}e^{-+u}}{2a}$. Finally, $M = \frac{1 - e^{-4a}}{2a} \int_{a}^{2\pi} a$ $2a \quad \theta = 0$ $\int_{\theta=0}^{2\pi}d\theta=\frac{\pi(1-e^{-4a})}{a}.$ $\frac{e}{a}$.

3) Find the centroid of the figure bounded by the x-axis and the curve $y = \sqrt{a^2 - x^2}$.

This is the part of the disk of radius *a* centered at the origin in the upper half plane. Since it is symmetric about the y-axis, the coordinate $\bar{x} = 0$. The only remaining question is the value for *y*. This is given by finding the moment of the half-disk area about the x-axis:

$$
M_x = \int_{x=a}^{a} \int_{y=0}^{\sqrt{a^2 - x^2}} y dy dx. \text{ We have } M_x = \int_{x=a}^{a} \left[\frac{y^2}{2} \right]_{0}^{\sqrt{a^2 - x^2}} dx = \frac{1}{2} \int_{x=a}^{a} (a^2 - x^2) dx. \text{ This reduces}
$$

to $M_x = \frac{1}{2} \left[a^2 x - \frac{x^3}{3} \right]_{-a}^{a} = \frac{1}{2} \left[\left(a^3 - \frac{a^3}{3} \right) - \left(-a^3 + \frac{a^3}{3} \right) \right] = \frac{1}{2} \left(\frac{4a^3}{3} \right) = \frac{2a^3}{3}. \text{ The area A}$
of the half-disk is $\frac{\pi a^2}{2}$, so $\bar{y} = \frac{M_x}{A} = \frac{2a^3}{3} \cdot \frac{2}{\pi a^2} = \frac{4a}{3\pi}$. Then the centroid is at $\left(0, \frac{4a}{3\pi} \right)$.

4) A quartz crystal occupies the space in the first octant where $0 \le x \le 1$, $0 \le z \le 1 - x$, and

 $0 \le y \le 3 - x - z$. The internal temperature of the crystal is given by the function $T(x, y, z) = x$ in degrees celsius. What is the weighted average of the temperature over the entire crystal?

The volume integral is
$$
\int_0^1 \int_0^{1-x} \int_0^{3-x-z} dy dz dx = \int_0^1 \int_0^{1-x} (3-x-z) dz dx = \int_0^1 \left[3z - xz - \frac{z^2}{2} \right]_0^{1-x} dx.
$$
\nThis reduces to
$$
\int_0^1 \left(3(1-x) - x(1-x) - \frac{(1-x)^2}{2} \right) dx = \frac{7}{6}.
$$
 Now we need the temperature weighted integral:
$$
\int_0^1 \int_0^{1-x} \int_0^{3-x-z} T(x, y, z) dy dz dx = \int_0^1 \int_0^{1-x} \int_0^{3-x-z} x dy dz dx.
$$
 This is similar to the volume integral and becomes
$$
\int_0^1 \int_0^{1-x} \left(3x - \frac{x^2}{2} - zx \right) dz dx
$$
, which reduces to
$$
\int_0^1 \left(3x(1-x) - x^2(1-x) - \frac{x(1-x)^2}{2} \right) dx = \frac{3}{8}.
$$
 Finally, the average temperature in the crystal is
$$
\overline{T} = \frac{\frac{8}{7}}{\frac{7}{6}} = 0.32
$$
 deg C.