FALL 24 - CALCULUS 3 - EXAM 4A - Solutions

No references. True or false...polar coordinates are (r, θ) , cartesian coordinates are (x, y, z), cylindrical coordinates are (r, θ, z) and spherical coordinates are (ρ, θ, ϕ) . Assume all integrals exist.

F 1)
$$\frac{\partial(r,\theta)}{\partial(x,y)} = r$$

F 2)
$$\frac{\partial(r, \theta, z)}{\partial(x, y, z)} = r$$

T 3)
$$\frac{\partial(x, y, z)}{\partial(\rho, \theta, \phi)} = \rho^2 \sin \phi$$

F 4)
$$\frac{\partial(x, y, z)}{\partial(r, \theta, z)} = r$$

T 5) There are six different ways to write the same triple integral

$$\mathsf{F} \mathbf{6} \int_{a}^{b} \int_{c}^{d} f(x, y) dx dy = \int_{a}^{b} \int_{c}^{d} f(x, y) dy dx$$
$$\mathsf{T} \mathbf{7} \int_{y} \int_{x} f(x, y) dx dy = \int_{\theta} \int_{r} f(x(r, \theta), y(r, \theta) r dr d\theta$$

F 8) In polar coordinates $x = r \cos \phi$

F 9) In spherical coordinaters $z = \rho \cos \theta$

F 10)
$$\rho = r$$

- T 11) The equation of a cylinder in cylindrical coordinates could be r = a, some constant
- F 12) The equation of a sphere in spherical coordinates could be r = a, some constant
- F 13) The centroid and the center of gravity never coincide if density is not constant
- F 14) The centroid of a figure depends on its density
- F 15) The center of mass of a three dimensional body always lies on its axes of symmetry

F 16) The centroid and center of mass are the same thing

T 17) M_{xy} is the moment of the mass of an object relative to the xy plane

F 18) M_{yz} is the moment of inertia of a mass about the yz plane

T 19) Differential moment of inertia of a differential mass dm about the z-axis is $dI = (x^2 + y^2)dm$

T 20) A rectangle has a higher moment of inertia around its shorter side than its longer side

T 21) Jacobians are local area or volume magnification factors for double or triple integrals

F 22) The equation of a paraboloid in cartesian coordinates could be $x^2 + y^2 = z^2$

T 23) $\iiint f(x, y, z) | dx dy dz \ge \iiint f(x, y, z) dx dy dz$

T 24) Coordinate transformations must be bijective mappings

T 25) The polar moment of inertia I_0 of a figure in the xy plane is the sum $I_x + I_y$