FALL 2024 - **CALCULUS 3**- **TEST** #**3A** - **Solutions**

 $f(x, y)$ and $g(x, y)$ are functions with all partial derivatives of second order unless noted

otherwise

True or false **T** 1) $\frac{\partial^2 f}{\partial x^2} = \frac{\partial^2 f}{\partial x^2}$ $\frac{\partial^2 f}{\partial x^2} = \frac{\partial^2 f}{\partial y^2}$ some $\frac{\partial^2 f}{\partial y^2}$ sometimes F 2) The sign of $\frac{\partial^2 f}{\partial x^2}$ and - $\frac{\partial^2 J}{\partial x^2}$ and $\frac{\partial^2 J}{\partial y^2}$ are $\partial^2 f$ are a $\frac{\partial^2 J}{\partial y^2}$ are always the same F 3) $\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x}$ if the $\frac{\partial}{\partial y \partial x}$ if these derivatives are continuous not enough $\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x}$ is po $\frac{\partial f}{\partial y \partial x}$ is possible without continuity of these derivatives F 5) $\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x}$ if the $\frac{\partial f}{\partial y \partial x}$ if the first order partial derivatives are continuous still not enough **T** 6) $\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x}$ if $f(x)$ $\frac{\partial^2 f}{\partial y \partial x}$ if $f(x, y)$ and all its first and second order derivatives are continuous T 6) $\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x}$ if $f(x, y)$ and all its first and sec
Clairaut's (mixed partials) Theorem F 7) If $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ exist $\frac{dy}{dy}$ exist at a point, then *f* is continuous there need full differentiability $\int f_{xy} = \frac{\partial^2 f}{\partial x \partial y}$ alwa $\frac{\partial f}{\partial y \partial x}$ always F 9) $D_{xy}f = \frac{\partial^2 f}{\partial x \partial y}$ alwa $\frac{\partial f}{\partial x \partial y}$ always T 10) The tangent plane to a surface at a point is perpendicular to the gradient there F 11) $\Delta f(x, y, z) \approx \frac{\partial^2 f}{\partial y^2} \Delta x + \frac{1}{2}$ $\frac{\partial^2 f}{\partial x^2} \Delta x + \frac{\partial^2 f}{\partial y^2} \Delta y + \frac{\partial^2 f}{\partial y^2}$ $\frac{\partial^2 f}{\partial y^2} \Delta y + \frac{\partial^2 f}{\partial z^2} \Delta z$ $\overline{\partial z^2}^{\Delta z}$ first partials not second T 12) $(e^{x\sin y})_{xy} = (e^{x\sin y})_{xyx}$ functions are all infinitely differentiable T 13) ∇f has both vector and differential operator properties T 14) $\nabla f \cdot u$ is a directional derivative in the direction of u **F** 15) $f\nabla g = f_x g_x + f_y g_y + f_z g_z$ this would be $\nabla f \cdot \nabla g$ T 16) If *u* is not parallel to ∇f , $D_u f \le |\nabla f|$ cos $\theta \le 1$ T 17) A gradient can be a direction vector for a tangent plane T 18) A gradient can determine a normal line to a surface F 19) If $\frac{\partial f}{\partial x} = \frac{\partial f}{\partial y} = 0$ everywhere, then $f = 0$ could be a constant F 20) $\frac{\partial f}{\partial x} = \frac{\partial f}{\partial y} = 0$ at a point, then *f* is constant could be a stationary point (peak or valley) T 21) The gradient at a point on a level contour $(f(x, y) = constant)$ is always zero F 22) $\frac{df}{dt} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial t} +$ $\overline{\partial x}$ $\overline{\partial t}$ + $\overline{\partial}$ $\frac{\partial x}{\partial x}$ + $\frac{\partial f}{\partial x}$ $\frac{\partial x}{\partial t} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial t}$ if $\overline{\partial y} \overline{\partial t}$ II x ∂y if y on $\frac{\partial y}{\partial t}$ if *x* and *y* depend on t ordinary derivatives T 23) If $\mathbf{r}(t)$ is a plane curve, then $\frac{d}{dt}f(\mathbf{r}(t))$ $\frac{d}{dt}f(\mathbf{r}(t)) = \nabla f \cdot \mathbf{r}'(t)$ chain rule

T 24) The gradient obeys the product rule

F 25) The gradient represents the direction of maximum decrease of a function increase