FALL 2024 - CALCULUS 3 - TEST #3A - Solutions

f(x, y) and g(x, y) are functions with all partial derivatives of second order unless noted

otherwise True or false T 1) $\frac{\partial^2 f}{\partial r^2} = \frac{\partial^2 f}{\partial v^2}$ sometimes F 2) The sign of $\frac{\partial^2 f}{\partial x^2}$ and $\frac{\partial^2 f}{\partial v^2}$ are always the same F 3) $\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x}$ if these derivatives are continuous not enough F 4) $\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x}$ is possible without continuity of these derivatives F 5) $\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x}$ if the first order partial derivatives are continuous still not enough T 6) $\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x}$ if f(x, y) and all its first and second order derivatives are continuous Clairaut's (mixed partials) Theorem F 7) If $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ exist at a point, then *f* is continuous there need full differentiability T 8) $f_{xy} = \frac{\partial^2 f}{\partial v \partial x}$ always F 9) $D_{xy}f = \frac{\partial^2 f}{\partial x \partial y}$ always T 10) The tangent plane to a surface at a point is perpendicular to the gradient there **F 11)** $\Delta f(x, y, z) \approx \frac{\partial^2 f}{\partial x^2} \Delta x + \frac{\partial^2 f}{\partial y^2} \Delta y + \frac{\partial^2 f}{\partial z^2} \Delta z$ first partials not second T 12) $(e^{x \sin y})_{xxy} = (e^{x \sin y})_{xyx}$ functions are all infinitely differentiable T 13) ∇f has both vector and differential operator properties T 14) $\nabla f \cdot u$ is a directional derivative in the direction of u **F** 15) $f\nabla g = f_x g_x + f_y g_y + f_z g_z$ this would be $\nabla f \cdot \nabla g$ T 16) If *u* is not parallel to ∇f , $D_u f \leq |\nabla f|$ $\cos\theta \leq 1$ T 17) A gradient can be a direction vector for a tangent plane T 18) A gradient can determine a normal line to a surface F 19) If $\frac{\partial f}{\partial x} = \frac{\partial f}{\partial y} = 0$ everywhere, then f = 0 could be a constant F 20) $\frac{\partial f}{\partial x} = \frac{\partial f}{\partial y} = 0$ at a point, then *f* is constant could be a stationary point (peak or vallev) T 21) The gradient at a point on a level contour (f(x, y) = constant) is always zero F 22) $\frac{df}{dt} = \frac{\partial f}{\partial x}\frac{\partial x}{\partial t} + \frac{\partial f}{\partial y}\frac{\partial y}{\partial t}$ if x and y depend on t ordinary derivatives T 23) If $\mathbf{r}(t)$ is a plane curve, then $\frac{d}{dt}f(\mathbf{r}(t)) = \nabla f \cdot \mathbf{r}'(t)$ chain rule

- T 24) The gradient obeys the product rule
- F 25) The gradient represents the direction of maximum decrease of a function increase