FALL 2024 - CALCULUS 3 - TEST 2A - Solutions

- T 1) $\mathbf{r}'(t)$ is a vector tangent to the path vector $\mathbf{r}(t)$
- F 2) The unit tangent vector $\mathbf{T}(t) = \mathbf{r}(t)/\|\mathbf{r}'(t)\|$ need $\mathbf{r}'(t)/\|\mathbf{r}'(t)\|$
- F 3) The unit binormal vector $\mathbf{B}(t) = (\mathbf{r}'(t)/\|\mathbf{r}'(t)\|) \times \frac{d\mathbf{T}}{dt}$, where $\mathbf{T}(t)$ is the unit tangent vector need to unitize $\frac{d\mathbf{T}}{dt}$
- T 4) The curvature of $\mathbf{r}(t)$ at a point is the reciprocal radius of the osculating circle at that point
- F 5) The product of curvature and torsion is constant at any point of $\mathbf{r}(t)$ they are unrelated
- F 6) Differential arc length $ds = \|\mathbf{r}(t)\|dt$ need $\|\mathbf{r}'(t)\|$
- F 7) Torsion is a measure of the tendency for the unit principal normal to change along a curve binormal
- T 8) If $\kappa(t) = 0$ for all t, then $\mathbf{N}(t)$ is undefined straight path
- F 9) The rate of change of the binormal vector with distance has no component in the direction of the tangent vector both normal and tangential components
- F 10) The derivative of a vector of constant length is zero direction still changing
- F11) $\mathbf{r}(t) = \langle \cos t, \sin t, 1 \rangle$ describes a helix of constant pitch this is circle at z = 1
- F 12) $\mathbf{r}(t) = \langle t, \cos t, \sin t \rangle$ describes a plane curve this is helix growing in x direction
- T 13) $\mathbf{B}(t)$ for a plane curve is constant it is unit direction vector for the plane
- F 14) $\mathbf{B}(t)$ for a helix is constant
- T 15) τ for a helix is constant also curvature
- F 16) Ballistic trajectories are for both self-propelled and non-self-propelled objects only non-self-propelled
- T 17) The binormal vector to a curve is a direction vector for the osculating plane **N** and **T** are in the osculating plane
- F 18) $\mathbf{r}''(t)$ is always perpendicular to $\mathbf{r}'(t)$ can have tangential acceleration
- F 19) $\|\mathbf{r}'(t)\|$ is always perpendicular to $\|\mathbf{r}(t)\|$ these are not vectors
- F 20) $\|\mathbf{r}'(t)\|$ is the speed vector not a vector
- F 21) $\mathbf{r}''(t)$ may have a component perpendicular to the osculating plane no component outside of osculating plane
- F 22) A projectile fired at angle θ with muzzle velocity v_0 has horizontal velocity $v_0 \sin \theta$ cosine
- F 23) Range only depends on muzzle velocity launch angle, too
- T 24) The Frenét frame is a basis for \mathbb{R}^3
- T 25) The binormal vector is defined in terms of the normal vector for a curve