ALGEBRA 2 - SPRING 2025 - TEST 3A - Solutions

T 1) If *D* is a domain, so is D[x] proved in class

T 2) If F is a field, F[x] is a unique factorization domain recent theorem

T 3) A non-zero, non-unit element in a domain D that is prime is also irreducible over D proved in class

T 4) An element that is irreducible over a domain *D* may be reducible over domain

 $D' \subset D$ 2x + 4 irred over \mathbb{Q} but reducible over \mathbb{Z}

T 5) If $f(x) \in \mathbb{Z}[x]$ is reducible over \mathbb{Q} is reducible over \mathbb{Z} big theorem

T 6) The norm of $2 - \sqrt{-5}$ in the quadratic number field $\mathbb{Z}\left[\sqrt{-5}\right]$ is 9 $2^2 - (1)(-5)$

T 7) Every euclidean domain is a unique factorization domain $ED \Rightarrow PID \Rightarrow UFD$

F 8) The homomorphism $\phi : \mathbb{Z} \to \mathbb{Z}_n$ given by $x \mapsto x \mod n$ has $\ker \phi = \{0\}$ any multiple of n

F 9) The First Isomorphism Theorem for rings says that if $\phi : R \to S$ is a homomorphism and *A* is an ideal of *R*, then *R*/*A* is isomorphic to *S*. Im ϕ

T 10) There is a field with exactly 120 invertible elements. \mathbb{Z}_{11^2}

T 11) Formal quotients of polynomials $\frac{f(x)}{g(x)}$, where $f(x), g(x) \in \mathbb{Z}[x]$ and $g(x) \neq 0$ are a field of fractions

field of fractions

F 12) $\mathbb{Z}[x]$ is a euclidean domain not a *PID* so can't be an *ED*

T 13) If f(x) is reducible over \mathbb{Q} then it factors over \mathbb{Z} see (5)

T 14) The euclidean algorithm applies to polynomials over ${\mathbb Q}$ field

F 15) $f(x) = x^3 - 4x^2 + 3x - 2$ is reducible over \mathbb{Z}_5 use mod p theorem

T 16) $f(x) = x^5 - 7x^3 + 3x^2 - 4x + 1$ has a zero in \mathbb{R} graph crosses x-axis for all odd degree polys

F 17) If *F* is a field, distinct polynomials in F[x] represent distinct functions from F[x] to *F* - look @ x^3 vs x^2 over \mathbb{Z}_2

F 18) Every field has a proper subfield \mathbb{Q} does not

F 19) The Eisenstein criterion only applies to monic polynomials any leading coefficient T 20) A primitive polynomial times a polynomial with content C results in a polynomial with content C use Gauss' lemma

T 21) Monic polynomials are always primitive gcd has to be 1

F 22) Primitive polynomials are always monic just as long as gcd is 1

T 23) If F is a field, a quadratic over F times a cubic over F always gives a quintic (degree five) over F leading coefficients not zero divisors

T 24) A subfield can be treated as a vector space over the containing field going to be very important next chapter

F 25) $\langle x^5 + 1 \rangle$ is a maximal ideal in $\mathbb{Q}[x]$ reducible over \mathbb{Z} , hence $\mathbb{Q}...(x+1)(x^4 - x^3 + x^2 - x + 1) = x^5 + 1$