ABSTRACT ALGEBRA - SPRING 2025 - EXAM 1B - Solutions

1) Show that $4x^2 + 6x + 3$ is a unit in $\mathbb{Z}_8[x]$ and find its inverse.

Suppose $(ax^2 + bx + c)(4x^2 + 6x + 3) = 1 \mod 8$. Then $4ax^4 + (6a + 4b)x^3 + (3a + 6b + 4c)x^2 + (3b + 6c)x + 3c = 1 \mod 8$ If c = 3, then $3c = 1 \mod 8$. If b = 2, then $3b + 18 = 0 \mod 8$. If a = 0, then $3a + 24 = 0 \mod 8$, $6 \cdot 0 + 4 \cdot 2 = 0 \mod 8$, and $4 \cdot 0 = 0 \mod 8$. We conclude $(2x + 3)(4x^2 + 6x + 3) = 1 \mod 8$, so $4x^2 + 6x + 3$ is a unit with inverse (2x + 3).

2) Find all maximal ideals in $\mathbb{R} \oplus \mathbb{R} \oplus \mathbb{R}$

 $\mathbb{R} \oplus \mathbb{R} \oplus \mathbb{R}$ is not a field (there are zero divisors), so we expect ideals other than the trivial and improper ideals. Consider these three subrings of $\mathbb{R} \oplus \mathbb{R} \oplus \mathbb{R}$: $\{0\} \oplus \mathbb{R} \oplus \mathbb{R}$, $\mathbb{R} \oplus \{0\} \oplus \mathbb{R}$, and $\mathbb{R} \oplus \mathbb{R} \oplus \{0\}$. They are clearly absorbing in each coordinate and they are all proper subrings of $\mathbb{R} \oplus \mathbb{R} \oplus \mathbb{R}$. $\{0\} \oplus \{0\} \oplus \mathbb{R}$ is proper and absorbing, but strictly contained in both $\{0\} \oplus \mathbb{R} \oplus \mathbb{R}$ and $\mathbb{R} \oplus \{0\} \oplus \mathbb{R}$. Likewise for the other similar cases. Any other subring of \mathbb{R} cannot be absorbing since the only ideals of \mathbb{R} are $\{0\}$ and \mathbb{R} . So these are the only maximal ideals of $\mathbb{R} \oplus \mathbb{R} \oplus \mathbb{R}$.

3) Show that $\{0, 2, 4, 6, 8, 10, 12\}$ is a field modulo 14. What is the identity?

This is a subring of \mathbb{Z}_{14} so all the required properties of operations are present. We only need to show that each nonzero element is invertible. Evidently 8 is the identity: $2 \times 8 = 16 = 2 \mod 14$, $4 \times 8 = 32 = 4 \mod 14$, $6 \times 8 = 48 = 6 \mod 14$, $8 \times 8 = 64 = 8 \mod 14$, $10 \times 8 = 80 = 10 \mod 14$, and $12 \times 8 = 96 = 12 \mod 14$. For invertibility: $2 \times 4 = 8 \mod 14$, $6 \times 6 = 36 = 8 \mod 14$, $8 \times 8 = 64 = 8 \mod 14$, $10 \times 12 = 120 = 8 \mod 14$.

4) Suppose that u, v, and u + v are units in a commutative ring. Show $u^{-1} + v^{-1}$ is also a unit.

Consider $(u + v)uv(u^{-1} + v^{-1}) = (u + v)(u^{-1}uv + v^{-1}uv) = (u + v)(v + u) = 1$, since (u + v) is a unit. Evidently $(u^{-1} + v^{-1})^{-1} = (u + v)uv = (u^2v + uv^2)$.

5) Let *R* be a commutative unital ring. Let *I* be a proper ideal of *R* with the property that every element in R - I is a unit. Show *I* is a unique maximal ideal of *R*.

Let $J \subseteq R$ be any ideal that contains any element x other than those in I. Then x is invertible

and this forces J = R. Then I must be maximal and also unique.