Tts reach extends beyond functional analysis to:
e Proof of the existence of Green’s functions [Garabedian and Schiffman 1954]

o Banach’s solution of the ‘easy’ problem of measure [Bachman and Narici 1966,
p. 188f]

Applications to control theory [Leigh 1980, Rolewicz 1937

Applications to convex programming [Balakrishnan 1981]

Applications to game theory [Kénig 1982]

A formulation of thermodynamics [Feinberg and Lavine 1983

3 A short history of analysis

In the nineteenth century, ‘vector’ meant ‘n-tuple.’ Toward the end of the century,
its scope was extended to include ‘sequence’—for some, anyway. There were only
fleeting contacts between geometric ideas and analysis for the most part and notions
of proof were quite relaxed, to say the least. The geometric theorem-proof style,
common today in most areas of mathematics, had to wait for the insights of Peano
and Hilbert & Co. To ‘prove’ something, you merely stated your case and argued
its plausibility. It was unfortunately similar to the rash manner in which the social
‘sciences’ provide ‘proofs’ in the modern era. We briefly illustrate how cavalier even
such greats as Fourier and Euler were in this regard in Sec. 3.3.

In the period 1890-1915 notions of structure were emerging in analysis and geo-
metric perspectives were being adopted. Standards of rigor were greatly improved
and new integrals made it possible to unify several different things.

3.1 Structure

Mathematics had matured to the point where the similarities between manipulating
different concrete objects were becoming apparent. A way was needed to be able to
express this indifference to actual identity. The ultimate framework was to let the
objects be points of an arbitrary set whose interactions were governed by a set of rules.
It happened first in algebra. There, Peano [1888] defined vector space and linear map
axiomatically. No more were vectors n-tuples or sequences; now you could not know
exactly what the ‘vectors’ were. Significantly, this opened the way to vector spaces
of arbitrary dimension, in particular to function spaces. But even though Pincherle
wrote a book about linear spaces in 1901, Peano’s idea was mostly ignored. Still,
the idea of defining a space abstractly as ‘objects’ that obeyed certain rules was one
whose time had come. Groups (a term coined by Galois) were defined on an arbitrary
set for the first time by Weber in 1895; field in 1903.
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In analysis it took a little longer than it did in algebra for the idea of structure
to take hold. The concrete objects here were functions but confusion persisted about
exactly what a function was. Dirichlet (1837) defined a numerical-valued function
of a real variable to be a table, or correspondence or correlation between two sets of
numbers. Riemann (1854) saw problems with the intuitive notion of function. To
make the point that our understanding was too primitive, he invented a function—
defined by a trigonometric series —which is continuous for irrational values of the
independent variable, discontinuous for rational values. Weierstrass’s (1874) classic
example of a nowhere differentiable, continuous function made the point even more
dramatically. As a result of these discoveries, Dedekind, Weierstrass, Méray and
Cantor, by different routes, made the € — 5 technique part of the standard répertoire
of analysis.

Pincherle insisted on distinguishing between the function and the values it as-
sumed. He said that mathematicians should use f rather than f(z), to think of
the function itself as an entity, divorced from its values. He and others decried the
confusion between a linear map and the matrix which represented it in a particular
coordinate system, a problem that is unfortunately still with us. Concomitant with
the point of view that functions were entities in themselves, Volterra [1888] suggested
that we should be thinking of functions defined on new domains such as on all contin-
wous curves in a square, and doing analysis on them—mno easy trick without general
topology at one’s disposal. He called these new kinds of functions fonctions de ligne,
the ligne being the continuous curve within the square.

But what is a curve? protested Peano. The term meant something like a con-
tinuous image of [0,1] in the unit square. Peano’s space-filling curve eloquently
demonstrated the diverse possibilities that such a definition permitted. Hadamard
was intrigued by Volterra’s suggestion, however, and persisted. In 1903 he called the
new functions of functions functionals, analysis on them functional analysis. Part of
this was not new. In the early 1800s there was also consideration of functions whose
domains were functions—derivatives, Laplace transforms, shift operators—but the
radical thing at that time was applying algebraic rules to them, a notion heretofore
thought only to apply to numbers. The time had now come to consider the analytic
properties of such operators.

Fréchet [1904] propounded ideas of limit and continuity in sets which did not con-
sist of mumbers. In his 1906 thesis he defined the present notion of metric (He did not
coin the term metric space, incidentally. Hausdorft introduced the more geometric-
sounding nomenclature in 1913.) and investigated concrete metric spaces in which
the ‘points’ were functions. He saw and stressed the importance of completeness,
compactness and separability.



3.2 Point of view—Geometric perspective

Geometry had been ‘algebraized’ in the early seventeenth century by Descartes and
Fermat. It was time for geometry’s revenge in the late nineteenth and early twentieth,
time for it to ‘geometrize’ analysis. Schmidt [1908] and Fréchet [1908] introduced the
language of geometry into the Hilbert space {2, first spoke of the norm (in its present
notation ||z]|) and of the triangle inequality for the norm. In 1913 Riesz described the
solution of systems of homogeneous equations

filg) =aaz1+--+ants =0, 1<1<n

as an attempt to find z = (21, ..., ,) orthogonal o the linear span [f1,--., fu] where
£ = (aq, - - -, @), i-e., he viewed solving the equations as an attempt to identify the
orthogonal complement of the linear span [f1, ..., fu] of the fi,.... fa. Significantly,
the ‘equations,” the f;, achieved vector status and stood on equal footing with the
‘variables.” Hilbert and his school also spoke of orthogonal expansions. Helly and
others, relying on earlier work of Minkowski [1896] introduced ideas about convezity
into the blood stream of analysis. The legacy of those ideas is still very much with
us.

3.3 Precision

Two principal defects of analysis in the seventeenth century were its capricious infu-
itiveness and its purely formal manipulation of symbols. As an example of this in-
tuitiveness, consider Johann Bernoulli’s (1693) mystic dogma that ‘a quantity which
is increased or decreased by an infinitely small quantity is neither increased nor de-
creased.’” As Bishop Berkeley furiously pointed out in The Analyst in 1734, this gave
analysts the best of both worlds: they could treat this schizophrenic ‘ghost of a de-
parted quantity’ as something until the last step of an argument and then jettison
it as nothing. Nowadays, some applied mathematicians retain ‘the little zero’ dx but
discard ‘higher order’ terms dz?, dz3, etc., at moments apparently determined more
by convenience than rigor.

For pure manipulation of symbols in series and products without regard to con-
vergence,.the master was Euler. Consider his ‘proof’ that €* = ¥, z"/n! by means
of taking the limit’ as n — oo in the binomial expansion -

n(n—l)x_2+n(n—1)(n—2)m_3

:L.n
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This apparently did not perturb his mathematical conscience. Despite Lagrange’s
protests, Fourier was equally uninhibited in his 1822 classic on heat, La theorie ana-
lytique de la chaleur. Having developed an expansion of a certain function in a series
of sines and cosines, he says ‘We can extend the same results to any functions, even
to those which are discontinuous and entirely arbitrary.” He formally manipulates



symbols, leaving convergence to take care of itself, and obtains an expansion of an
‘arbitrary’ odd function in a sine series.

Though the influence of the work of Cauchy, Riemann and Weierstrass had already
raised standards, the work of Hilbert and his school on the foundations of geometry
elevated the standards of rigor so much that most earlier mathematical work looks
shabby by comparison.

3.4 New tools: The new integrals

Considerable effort was expended in the 19th century on the problem of solution
of systems of infinitely many equations in infinitely many unknowns. (Try and get
mathematicians not to try to solve equations!) In the linear case the simultaneous
linear equation problem could be stated: Given linear functionals f; and scalars ¢;,
find  such that fi(z) = ¢;. However many f’s (and c’s) there were, that was the
number of coordinates z was supposed to have. When there are infinitely many f’s
and ¢’s, £ must have infinitely many components or coordinates— must be a sequence,
that is, rather than a tuple. Considerable progress in solving infinite systems of linear
equations was achieved by cleverly generalizing determinants. The basic idea was to
truncate the infinite system of linear equations and then take a limit. A serious
weakness of the approach was its dependence on infinite products which converge
only under highly restrictive circumstances. Lebesgue and Stieltjes’ new theories of
the integral made it possible to unify the problems, of which the following are two
special cases.

1. Fourier series. Given a sequence (g) of cosines, say, and (a,) of numbers,
perforce from 43, find a function z for which these were the Fourier coefficients,
i.e., such that [z (t) gn (t) dt = ay, for every n € N. Is z unique?

2. Moment problems. Given a sequence (an) of numbers, find a function =z such
that [t"x (t) dt = an for every n € N.

4 What Riesz did

Borrowing some things already done in Hilbert space, Riesz [1910, 1911] set out to
solve the following problem: For p > 1 (so he could use the Holder and Minkowski
inequalities which he had just generalized),

(P) Given infinitely many ys in Ly [a, b] and scalars ¢, find z in Lyla,b]
such that

/: z(t)ys (t) dt = ¢,



