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Hypermath / Applied Math / Vectors / Basis

THEOREM: EVERY VECTOR SPACE HAS A BASIS

DEFINITIONS:

1) A vector space is an ordered pair (¥, k), where ¥ is an abelian group under the operation
vector addition and k is a field. The field elements act on the group elements via scalar
multiplication, which applies a scalar to a vector and produces another vector. Since it straddles
both the field and group, scalar multiplication must satisfy a number of compatibility properties such
as distributivity over vector addition, distributivity over field addition, associativity with field
multiplication, and unitarity, i.e. the field unity times any vector returns the vector. We often write
the vector space as simply ¥ when the field of scalars is clear from context.

2) If § < Vs a set of vectors such that every vector in the space can be written as a finite linear
combination of elements of S, then S is said to span ¥ or be a spanning set for V.

3) A set of vectors I  V with the property that any finite linear combination of vectors from 7
that equals the zero vector must have all linear coefficients equal to zero is called a linearly
independent subset. A spanning set need not be linearly independent (redundancy is allowed). The
combination must be finite since an infinite sum of vectors is not defined in the space.

4) A set of vectors B — V'that is both a spanning set and a linearly independent set is called a
basis for V. The number of vectors in the basis is the dimension of the space. If the dimension of a
space is a natural number, the space is a finite dimensional vector space. Vector spaces can have
countably infinite or even uncountable bases, in which case they are infinite dimensional.

KEY LEMMA:

Zorn’s Lemma, which states that if P is a partially ordered set and every chain (linearly ordered
subset) in P has an upper bound in P (this part is essential...the bound has to be inside P), then P has
a maximal element relative to its order. There may be more than one maximal element, but at least
one. A maximal element has no other element greater or after it in the ordering.

PROOF:

Given the vector space ¥, consider the collection € of all linearly independent subsets of ¥. This
collection is nonvoid, since a subset of one vector is trivially linearly independent. The elements of €
can be partially ordered by set inclusion. Suppose §1 < §> < --- © S, C --- is a chain in €. The
notation indicates that the chain could have arbitrary cardinality. Now look at [J{Ss € €}. This set
is linearly independent, since any linear combination in the union must already appear in one of the
sets Sq, where it is known to be linearly independent. Therefore, the given chain is bounded above by
U{S« € €}. Since this is true of any chain in €, Zorn’s Lemma immediately implies the existence of
a maximal element B in €. Clearly B must span ¥, otherwise we could adjoin to B any element not in
its span, and this would be a linearly independent set larger than B, contrary to its maximality. Hence
B is a spanning linearly independent subset of V...a basis. B
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